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A method is suggested for a generalized kinetic description of  solid-phase processes on the 
basis of the complementarity principle. It enables one to obtain spectra as discrete distributions 
of the probability of  describing a process in terms of  kinetic functions according to their ordinal 
numbers. The spectra obtained make it possible to control changes in the behaviour of a solid- 
phase process due to changing process conditions. 

It has been shown in part I [1] that the KEKAM (Kolmo- 
gorov-Erofeev-Kazeev-Avrami-Mampel)  equation used in the kinetics of 
solid-phase processes possesses the features of a generalized description peculiar to 
the nontraditional approach [2] to the solution of the inverse kinetic problem. The 
present part deals with a new method of such an approach, usingthe probability 
spectra of  kinetic functions for a generalized description of a process. Further, the 
specificities and applications of the method are considered. 

Probability spectra of kinetic functions 

It is clear that an experimental kinetic curve may be described by various formal 
models (kinetic functions) within different accuracies characterized by the 
correlation coefficients or residual squared sums. These values are essentially a 
statistical form for the probability of describing a kinettc curve in terms of a kinetic 
function. The probability spectrum of  kinetic functions is therefore understood to 
be a discrete distribution of  the probabilities of  describing the kinetic curve with 
kinetic functions in accordance with their ordinal numbers (Table 1). 
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Table 1 Formal models of solid-phase processes 

N Formal model g(~) 

I ~1/4 

2 51/3 

3 Power law ~/2 
4 
5 ~3/2 

6 Contracting Cylinder 211 - (1 - ct) t/2] 
7 geometry Sphere 311 -(1 _~)1/3] 

8 Mampel - In (1 - ct) 

9 (1-~)-1/2-  1 
Reaction o r d e r  

10 (I  - ~ )  1 _ 1 

11 Anti-jander 1.5[(1 + cr 1'3 - 1] 2 
12 One-dimensional ~r 
13 Diffusion Valensi (1 =~r -cr162 

14 Ginstling-Brounstein 1.5 1 - ~ e -  (I - c~) 2/3 

15 Jander 1.511 - (1 - ~)1/312 

The  descr ip t ion  probab i l i t i e s  were ca lcula ted  th rough  residual  d ispers ions  

ob ta ined  by the least squares  me thod  for each o f  the kinetic  funct ions  subs t i tu ted  

into the C o a t s - R e d f e r n  equa t ion  [3]. The  p robab i l i t y  ca lcula t ion  me thod  is 

considered in detai l  in [4]. U p o n  ca lcula t ion ,  the p robab i l i ty  values are  presented  as. 

percentages  of  the m a x i m u m  value. The  final form of  the spec t rum is p; �9 100% vs. 
Pmax 

i, where Pi is the descr ip t ion  p robab i l i t y  with the use o f  the i-th kinetic  funct ion,  Pm,x 

is the max imum value of  all Pi, and  i is the ord ina l  number  o f  the kinetic funct ion.  

F o r  speet ra  ca lcula t ions ,  the kinetic  funct ions  o f  Table  1 have been used. The  

K E K A M - t y p e  equa t ions  were d is regarded ,  as they may  be replaced within some 

er ror  by a l inear  c o m b i n a t i o n  o f  funct ions  o f  three o ther  classes [5] descr ib ing the 

power  law of  nuclear  growth ,  interface reac t ion  and diffusion. Hence,  the 

K E K A M - t y p e  equat ions  canno t  give any add i t iona l  in fo rmat ion  when the entire 

set o f  kinetic funct ions  o f  the above  three classes is used. 

Function spectrum properties 

In the case of  accurate experiments, the kinetic curves are rather smooth, i.e. the 
random error is small. Therefore, when describing fairly smooth experimental 

J. Thermal Anal. 34~ 1988 



VYAZ OVKIN et al.: KINETIC DESCRIPTION 241 

(X ./c" 
/. 

Ib 

T 
Fig. I Regular displacement of  theoretical curves relative to the experimental points 

r 

Fig. 2 Random scatter of  experimental points around the theoretical curves 

relationships by perfectly smooth model curves, one encounters primarily 
systematic, rather than random errors, which appear because none of  the real 
kinetic curves exactly coincide with the,theoretical one. This results in the regular 
displacement of the theoretical curves relative to the experimental relationship (Fig. 
1), but not in the random scatter of  the experimental points around the theoretical 
ct ve (Fig. 2). Thus, if the variation of the experimental conditions does not change 
the behaviour of the experimental curve, then equivalent shifts of  the theoretical 
curves relative to the experimental one will be observed at equivalent curve points 
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(for example, for equal decomposition degree) characterizing different experi- 
mental conditions. This finally results in equivalent relationships between the 
appropriate description probabilities for experimental dependences obtained for 
different experimental conditions, i.e. in actually equivalent spectra. 

Hence, the spectra of kinetic functions must be invariant to changing 
experimental conditions (first of all temperature under isothermal conditions, and 
heating rate under nonisothermal conditions) if no qualitative changes are 
encountered in the process behaviour. Otherwise, the form of the spectra will 
inevitably change. 

Experimental data modelling 

Kinetic curves were modelled for isothermal conditions in accordance with 
Eq. (1): 

and for nonisothermal conditions in accordance with Eq. (2): 

where G is the inverse of the kinetic functions for g(00, i.e. 

G(g(ct)) = 0~ (3) 

The integral in (2) was replaced b y  the approximation suggested in [6]: 

i ( R_E~ ) E e x p ( - x )  x S + 1 8 x 2 + 8 8 x + 9 6  (4) 
exp - dT = R x x4+20x3+ 1 2 0 x Z + 2 4 0 x +  120 

E 
where x = 

RT"  

A linear combination of  two kinetic functions (N7 and N15, Table 1) describing 
the interface reaction (spherical symmetry) and diffusion (Jander equation) was 
chosen as g(~): 

g(~) = c 1 .311 - (1 - ~)1/3] + c2 ~ [1 - (1 - 0 ~ ) 1 / 3 1 2  (5) 

Such a choice is stipulated by two main reasons. First, Eq. (5) determines the 
complex kinetics. Thus, the experimental data obtained with its aid might not 
coincide with any of the simple models. If this condition is not obeyed, the spectrum 
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of'the simulated process will acquire a trivial form, being one 100% line. Second, 
there exists a very simple inverse function G for function (5]: 

2 g(o,) 
(6) 

Equations (1) and (2) were used to find the values of time (isothermal conditions) 
and temperature (nonisothermal conditions) consistent wi th  the decomposition 
degrees 0.1, 0.2 . . . . .  0.9 and different C1 and C2 combinations in (5), such as 
0.3 : 0.7, 0.5 : 0.5 and 0.7 : 0.3. The spectra obtained with isothermal data for five 
temperatures (350, 355, 360, 365 and 370 K) are essentially equivalent at prescribed 
C1 and C2, and are of the form presented i n Fig. 3. The spectra obtained with 
nonisothermal data for five heating rates (1.25, 2.5, 5.0, 10.0 and 20.0 deg-min-1) 
are also equivalent for prescribed C1 and C2 (Fig. 4). 

From comparison of the spectra for one and the same process under isothermal 
and nonisothermal conditions, it can easily be seen that in the latter case the 
spectrum is of more complicated form. This fact presumably stems from the 
complication of the non-isothermal kinetic curve due to the temperature- 
dependence of the exponential part of Eq. (2). Such complication in particular is 
responsible for the fact that the discrimination of kinetic functions in terms of 
nonisothermal data is always more complex than it is in the isothermal case. 

It should be also emphasized that the strongest lines in the spectra of processes 
prescribed by linear combination (5) in the general case do not conform with the 
kinetic functions N7 and N15 (Table 1) in either the isothermal or the 

a) b) 

I l [ i i i I l l I , I 
I 5 10 15 i ,5 10 15 

c) 

I I , I I J 
i 5 10 15 

F i g .  3 The spectra obtained by isothermal data with: A) C 1 =0.7, C2=0,3; B) C1 =0.5, C2=0.5; 
C) C l =0.3, C2=0.7 
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Fig. 4 The spectra obtained by non-isothermal data with: A) C 1 = 0.7, C2 = 0.3; B) C 1 = 0.5, C 2 = 0.5; 
C) Cl =0.3, C2=0.7 
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Fig. 5 Base functions (1, 5) and linear combinations: 2. C, =0.3, C2=0.7; 3. C1 =0.5, C2=0.5; 
4. C 1 =0.7, C~=0.3 

nonisothermal case. The explanation is that the linear combination as a kinetic 
function description determines its intermediate character relative to the base 
functions (Fig. 5). Hence, the strongest spectrum lines correspond to those kinetic 
functions which give the best description of the linear combination, i.e. those which 
are most probable in this case. 
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Random error effect on the spectrum form 

As the spectra are calculated at prescribed decomposition degrees (0.1, 0 .2 , . . . ,  
0.9), it was assumed that only temperature (time in the isothermal case) Contains a 
random normally distributed error. Considering these assumptions, the quantities 
containing an experimental error conform with [7]: 

= r o + o x j  ( 7 )  

where T o is the model temperature (time), a is the prescribed r.m.s, deviation, and xj 
is the random normally distributed number. The values ofx~ can easily be obtained 
using the generator of uniformly distributed random numbers Ri [7]: 

i = !  
x - 

As noted in [7], at n = 12 formula (8) yields satisfactory values of random numbers. 
We have used the higher value n=48,  as with increasing n distribution (8) 
asymptotically approaches the normal one in accordance with the central limit 
theorem [81. 

In Fig. 6, the spectra based on nonisothermal data exemplify the effects of 
random errors on the form of the spectra for Ci = 0.7 and C 2 = 0.3. It can be seen 
that, with increasing error a, the spectra change essentially. We have found, 
however, that at a prescribed a and various combinations of random deviations for 

~=0.01 = 0.05 

l i  [ I i i l l  I ~  I _.i 
1 5 10 15 1 5 10 15 

cr = 0.1 

I[, J l  I t 
1 5 10 15 

Fig. 6 Influence of  random error level on the spectra obtained by non-isothermal data for C a ~0.7 ,  

C 2 = 0.3  
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T ~ the spectrum form for constant C 1 and C 2 is preserved (the error does not 
exceed 5% of  the line strength). 

Accordingly, it is clear that changes in the form 'of the spectrum with varying 
experimental conditions may be due to two reasons: the changing character of  the 
process, or the changing level of  the experimental error a. In this case~ while the 
changes in the heating rate (temperature) alter the form of the spectrum, which, 
being changed, remains constant at some heating rates (temperature), the changes 
in the spectrum are due to variation in the process behaviour. If no regular change is 
observed in the form of the spectrum with Varying experimental conditions, the 
change is random (i.e. caused by uncontrollable reasons) and the results of  
measurement for such experimental conditions should be omitted from the 
calculations. 

Conclusion 

The method suggests a generalized description of  the process using a probability 
spectrum of  kinetic functions. This spectrum is shown to possess invariance relative 
to both experimental errors (at a constant level of  the error tr) and experimental 
conditions (temperature for isothermal conditions and heating rate for noniso- 
thermal ones). Since measurements for one and the same group of  samples on' an 
instrument in a certain precision class contain an experimental error of  one and the 
same level tr, a method may be suggested to control changes in the process under 
either isothermal or nonisothermal conditions. 
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Zusammenfassung - -  Eine Methode, basierend auf dem Komplement/irprinzip, zur allgemeinen 
kinetischen Beschreibung von Festphasenvorgangen wird beschrieben. Diese erm6glicht, Spektren als 
diskrete Vei-teilung der Wahrscheinlichkeit der Beschreibung von Vorg/ingen als Ausdrficke kinetischer 
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Funktionen in 0bereinstimmung mit deren Ordnungszahlen au~zudriicken, Die erhaltenen Spektren 
erm6glichen es, mit Ver~inderungen der Vorgangsbedingungen in Verbindung stehenden 
Ver/inderungen im Verhalten von Festphasenvotg~.ngen zu verfolgen. 

P e 3 m M e  - -  Ilpe~,aoxe8 MeTOa o6o6meaHoro rrlrleTrlqecroro onncaana Taepllodpa3HblX apoueccoa, 
ocrloaarlHoFo Ha npnnunne ]IOnO.aHl,ITe.~bblOCTtt. MeTOII IIO3aO.rlfleT IIo.rtyqHTL ClleKTpbl, 
npellcTaa~momne co6ofi ,q,CXpeTaoe paoIpe~tenenne aepo~TriOCXr~ onncann~ npouecea c IIOMOUlbIO 
orge.~hg~.tx Kt~aern,~ecgux qby~Ku~t~ no ~x rropa.aroma:~ ~toMepaM. F/ony,teaa~,ze e~errpb~ IIO38~YLIH~T 
KOltTpO.tlHOOBaTb H3MeHent4e xaparTepa TRep.//o~a3noro npuecca npa H3raenenun ycnoa~fi ero 
npoTeranrl~i. 
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