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A method is suggested for a generalized kinetic description of solid-phase processes on the
basis of the complementarity principle. It enables pne to obtain spectra as discrete distributions
of the probability of describing a process in terms of kinetic functions according to their ordinal
numbers. The spectra obtained make it possible to control changes in the behaviour of a solid-
phase process due to changing process conditions.

It has been shown in part [ [I] that the KEKAM (Kolmo-
gorov-Erofeev—Kazeev—-Avrami-Mampel) equation used in the kinetics of
solid-phase processes possesses the features of a generalized description peculiar to
the nontraditional approach [2] to the solution of the inverse kinetic problem. The
present part deals with a new method of such an approach, using the probability
spectra of kinetic functions for a generalized description of a process. Further, the
specificities and applications of the method are considered.

Probability spectra of Kinetic functions

It is clear that an experimental kinetic curve may be described by various formal
models (kinetic functions) within different accuracies characterized by the
correlation coefficients or residual squared sums. These values are essentially a
statistical form for the probability of describing a kinetic curve in terms of a kinetic
function. The probability spectrum of kinetic functions is therefore understood to
be a discrete distribution of the probabilities of describing the kinetic curve with
kinetic functions in accordance with their ordinal numbers (Table 1).
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Table 1 Formal models of solid-phase processes

N Formal model g(a)

l al/4

2 ali?

3 Power law al/?

4 o

5 a2

6 Contracting Cylinder - (1—-a)'?)

7 geometry Sphere 31— (1—a)!’3]

8 Mampel ~In(1—a)

9 - (=) 2= 1
10 Reaction order U—a) =1
11 Anti-jander L5[(1+ )13 — 1]
12 One-dimensional o?
13 Diffusion Valensi (l—o)In(1—a)+a

2

14 Ginstling-Brounstein 51— 30 (I—a)*3
15 Jander LS[1—(1—a)'3?

The description probabilities were calculated through residual dispersions
obtained by the least squares method for each of the kinetic functions substituted
into the Coats—Redfern equation [3]. The probability calculation method is
considered in detail in [4]. Upon calculation, the probability values are presented as.

percentages of the maximum value. The final form of the spectrumis P 100% vs.

max

i, where p; is the description probability with the use of the i-th kinetic function, p,,,,
is the maximum value of all p;, and i is the ordinal number of the kinetic function.

For spectra calculations, the kinetic functions of Table 1 have been used. The
KEKAM-type equations were disregarded, as they may be replaced within some
error by a linear combination of functions of three other classes [5] describing the
power law of nuclear growth, interface reaction and diffusion. Hence, the
KEKAM-type equations cannot give any additional information when the entire
set of kinetic functions of the above three classes is used.

Function spectrum properties

In the case of accurate experiments, the kinetic curves are rather smooth, i.e. the
random error is small. Therefore, when describing fairly smooth experimental
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[

o8

=
Fig. 1 Regular displacement of theoretical curves relative to the experimental points

T

Fig. 2 Random scatter of experimental points around the theoretical curves

relationships by perfectly smooth model curves, one encounters primarily
systematic, rather than random errors, which appear because none of the real
kinetic curves exactly coincide with the.theoretical one. This results in the regular
displacement of the theoretical curves relative to the experimental relationship (Fig.
1), but not in the random scatter of the experimental points around the theoretical
ct ve (Fig. 2). Thus, if the variation of the experimental conditions does not change
the behaviour of the experimental curve, then equivalent shifts of the theoretical
curves relative to the experimental one will be observed at equivalent curve points
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(for example, for equal decomposition degree) characterizing different experi-
mental conditions. This finally results in equivalent relationships between the
appropriate description probabilities for experimental dependences obtained for
different experimental conditions, i.e. in actually equivalent spectra.

Hence, the spectra of kinetic functions must be invariant to changing
experimental conditions (first of all temperature under isothermal conditions, and
heating rate under nonisothermal conditions) if no qualitative changes are
encountered in the process behaviour. Otherwise, the form of the spectra will
inevitably change.

Experimental data modelling

Kinetic curves were modelled for isothermal conditions in accordance with

Eq. (1):
o= G<A -exp(— R—ET>t> (1)

and for nonisothermal conditions in accordance with Eq. (2):

AT E
=G| — - — 2
o G(ﬂ gexp( RT)dT) ¥))
where G is the inverse of the kinetic functions for g(a), i.e.
Gg@) = a (3)

The integral in (2) was replaced by the approximation suggested in [6]:

T - AT — Eexp (—x) x>+ 18x2+88x+96
(j)eXP T R x  x*+20x3+ 120x2+ 240x+ 120

“4)

h
re x = —.
where x RT

A linear combination of two kinetic functions (N7 and N15, Table 1) describing
the interface reaction (spherical symmetry) and diffusion (Jander equation) was
chosen as g{a):

3
gla) = ¢,-3[1-(1 *ot)”3]+6’z§[1—(1 —o)! )2 (%)
Such a choice is stipulated by two main reasons. First, Eq. (5) determines the
complex kinetics. Thus, the experimental data obtained with its aid might not

coincide with any of the simple models. If this condition is not obeyed, the spectrum
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of the simulated process will acquire a trivial form, being one 100% line. Second,
there exists a very simple inverse function G for function (5}:

a=1—<1+°_1¢ (ﬁ)2+3g—(°‘2>3 6)

cy Cy 3 ¢,

Equations (1) and (2) were used to find the values of time (isothermal conditions)
and temperature (nonisothermal conditions) consistent with the decomposition
degrees 0.1, 0.2,..., 0.9 and different C, and C, combinations in (5), such as
0.3:0.7,0.5:0.5 and 0.7:0.3. The spectra obtained with isothermal data for five
temperatures (350, 355, 360, 365 and 370 K) are essentially equivalent at prescribed
C, and C,, and are of the form presented in Fig. 3. The spectra obtained with
nonisothermal data for five heating rates (1.25, 2.5, 5.0, 10.0 and 20.0 deg-min™1)
are also equivalent for prescribed C, and C, (Fig. 4).

From comparison of the spectra for one and the same process under isothermal
and nonisothermal conditions, it can easily be seen that in the latter case the
spectrum is of more complicated form. This fact presumably stems from the
complication of the non-isothermal kinetic curve due to the temperature-
dependence of the exponential part of Eq. (2). Such complication in particular is
responsible for the fact that the discrimination of kinetic functions in terms of
nonisothermal data is always more complex than it is in the isothermal case.

It should be also emphasized that the strongest lines in the spectra of processes
prescribed by linear combination (5) in the general case do not conform with the
kinetic functions N7 and N15 (Table 1) in either the isothermal or the

a) b)

9}

I 1 L
1 5 10 15

Fig. 3 The spectra obtained by isothermal data with: A) C,;=0.7, C;=0.3; B) C,=0.5, C;=0.5;
C) C,=0.3, C,=0.7
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a) b)
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Fig. 4 The spectra obtained by non-isothermal data with: A) C,=0.7, C,=0.3; B) C,=0.5, C,=0.5;
C) C,=03,C,=0.7

glx)

L 4

e

Fig. 5 Base functions (1, 5) and linear combinations: 2. C,=0.3, C,=0.7; 3. C;=0.5, C,=0.5;
4. C,=0.7,C,=03

nonisothermal case. The explanation is that the linear combination as a kinetic
function description determines its intermediate character relative to the base
functions (Fig. 5). Hence, the strongest spectrum lines correspond to those kinetic
functions which give the best description of the linear combination, i.e. those which
are most probable in this case.
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Random error effect on the spectrum form

As the spectra are calculated at prescribed decomposition degrees (0.1, 0.2,. . .,
0.9), it was assumed that only temperature (time in the isothermal case) contains a
random normally distributed error. Considering these assumptions, the quantities
containing an experimental error conform with [7]:

whereT { is the model temperature (time), o is the prescribed r.m.s. deviation, and x;
is the random normally distributed number. The values of x; can easily be obtained
using the generator of uniformly distributed random numbers R, [7]:

i
i=1

xX=——— ¥

]

NS TR

NS T

As noted in [7], at n= 12 formula (8) yields satisfactory values of random numbers.
We have used the higher value n=48, as with increasing » distribution (8)
asymptotically approaches the normal one in accordance with the central limit
theorem [8].

In Fig. 6, the spectra based on nonisothermal data exemplify the effects of
random errors-on the form of the spectra for C;=0.7 and C,=0.3. It can be seen
that, with increasing error o, the spectra change essentially. We have found,
however, that at a prescribed ¢ and various combinations of random deviations for

o =001 ¢ =005
L L ! L L | |
1 5 10 15 1 5 10 5]
o =01
L I ) 1 | i
1 5 10 15

Fig. 6 Influence of random error level on the spectra obtained by non-isothermal data for C,=0.7,
C,=03
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T?, the spectrum form for constant C; and C, is preserved (the error does not
exceed 5% of the line strength).

Accordingly, it is clear that changes in the form of the spectrum with varying
experimental conditions may be due to two reasons: the changing character of the
process, or the changing level of the experimental error . In this case, while the
changes in the heating rate (temperature) alter the form of the spectrum, which,
being changed, remains constant at some heating rates (temperature), the changes
in the spectrum are due to variation in the process behaviour. If no regular change is
observed in the form of the spectrum with varying experimental conditions, the
change is random (i.e. caused by uncontrollable reasons) and the results of
measurement for such experimental conditions should be omitted from the
calculations.

Conclusion

The method suggests a generalized description of the process using a probability
spectrum of kinetic functions. This spectrum is shown to possess invariance relative
to both experimental errors (at a constant level of the error ¢) and experimental
conditions (temperature for isothermal conditions and heating rate for noniso-
thermal ones). Since measurements for one and the same group of samples on an
instrument in a certain precision class contain an experimental error of one and the
same level o, a method may be suggested to control changes in the process under
either isothermal or nonisothermal conditions.
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Zusammenfassung — Eine Methode, basierend auf dem Komplementérprinzip, zur allgemeinen
kinetischen Beschreibung von Festphasenvorgingen wird beschrieben. Diese ermoglicht, Spektren als
diskrete Verteilung der Wahrscheinlichkeit der Beschreibung von Vorgingen als Ausdriicke kinetischer
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Funktionen in Ubereinstimmung mit deren Ordnungszahlen auszudriicken. Die erhaltenen Spektren
ermiglichen es, mit Verdnderungen der Vorgangsbedingungen in Verbindung stehenden
Verdnderungen im Verhalten von Festphasenvorgingen zu verfolgen.

Pesome — IIpeytoxked MeTox 0G0GIEHHOTO KHHETHYECKOTO ONHCaHus TBEPAOdasHBIX NpoIeccoB,
OCHOBaHHOrO H2 NPHHIHNE JONMOJHMTENBHOCTH. MeToa I[O3BONAET TOJNYYHTL CIIEKTpSI,
npeacTasgaroLKe co60i THCXpETHOE paclpeieNcine BEPOATHOCTH ONHCAHUA MPOLECCa € JOMOILLIBIO
OTAEABHBIX KMHCTHYCCKHX GYRKUAK IO HX DOPRAKOBMM HOMEepaM. TTonyendsie CliexTPb No3BOIIOT
KOHTPONMHPOBAaTh H3MEHCHHE xapakTepa TBepAoda3HOro MplEcca mpd U3MEHCHHH YCAOBUH €ro
OPOTEKAHMS.
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